Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Indian journal of community medicine : official publication of Indian Association of Preventive & Social Medicine ; 47(4):631-633, 2022.
Article in English | EuropePMC | ID: covidwho-2235451
2.
Indian J Community Med ; 47(4): 631-633, 2022.
Article in English | MEDLINE | ID: covidwho-2201723
3.
Viruses ; 13(5)2021 05 17.
Article in English | MEDLINE | ID: covidwho-1234829

ABSTRACT

The number of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) cases is increasing in India. This study looks upon the geographic distribution of the virus clades and variants circulating in different parts of India between January and August 2020. The NPS/OPS from representative positive cases from different states and union territories in India were collected every month through the VRDLs in the country and analyzed using next-generation sequencing. Epidemiological analysis of the 689 SARS-CoV-2 clinical samples revealed GH and GR to be the predominant clades circulating in different states in India. The northern part of India largely reported the 'GH' clade, whereas the southern part reported the 'GR', with a few exceptions. These sequences also revealed the presence of single independent mutations-E484Q and N440K-from Maharashtra (first observed in March 2020) and Southern Indian States (first observed in May 2020), respectively. Furthermore, this study indicates that the SARS-CoV-2 variant (VOC, VUI, variant of high consequence and double mutant) was not observed during the early phase of virus transmission (January-August). This increased number of variations observed within a short timeframe across the globe suggests virus evolution, which can be a step towards enhanced host adaptation.


Subject(s)
COVID-19/epidemiology , Phylogeography/methods , SARS-CoV-2/genetics , Adult , COVID-19/genetics , Female , Genome, Viral/genetics , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Humans , India/epidemiology , Male , Middle Aged , Mutation/genetics , Phylogeny , SARS-CoV-2/pathogenicity
5.
Indian J Med Res ; 151(2 & 3): 216-225, 2020.
Article in English | MEDLINE | ID: covidwho-32576

ABSTRACT

Background & objectives: An outbreak of respiratory illness of unknown aetiology was reported from Hubei province of Wuhan, People's Republic of China, in December 2019. The outbreak was attributed to a novel coronavirus (CoV), named as severe acute respiratory syndrome (SARS)-CoV-2 and the disease as COVID-19. Within one month, cases were reported from 25 countries. In view of the novel viral strain with reported high morbidity, establishing early countrywide diagnosis to detect imported cases became critical. Here we describe the role of a countrywide network of VRDLs in early diagnosis of COVID-19. Methods: The Indian Council of Medical Research (ICMR)-National Institute of Virology (NIV), Pune, established screening as well as confirmatory assays for SARS-CoV-2. A total of 13 VRDLs were provided with the E gene screening real-time reverse transcription-polymerase chain reaction (rRT-PCR) assay. VRDLs were selected on the basis of their presence near an international airport/seaport and their past performance. The case definition for testing included all individuals with travel history to Wuhan and symptomatic individuals with travel history to other parts of China. This was later expanded to include symptomatic individuals returning from Singapore, Japan, Hong Kong, Thailand and South Korea. Results: Within a week of standardization of the test at NIV, all VRDLs could initiate testing for SARS-CoV-2. Till February 29, 2020, a total of 2,913 samples were tested. This included both 654 individuals quarantined in the two camps and others fitting within the case definition. The quarantined individuals were tested twice - at days 0 and 14. All tested negative on both occasions. Only three individuals belonging to different districts in Kerala were found to be positive. Interpretation & conclusions: Sudden emergence of SARS-CoV-2 and its potential to cause a pandemic posed an unsurmountable challenge to the public health system of India. However, concerted efforts of various arms of the Government of India resulted in a well-coordinated action at each level. India has successfully demonstrated its ability to establish quick diagnosis of SARS-CoV-2 at NIV, Pune, and the testing VRDLs.


Subject(s)
Clinical Laboratory Techniques/standards , Coronavirus Infections/diagnosis , Mass Screening/organization & administration , Pneumonia, Viral/diagnosis , Adolescent , Adult , Aged , Betacoronavirus , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Child , Child, Preschool , Female , Humans , India , Infant , Male , Middle Aged , Pandemics , Quality Control , Real-Time Polymerase Chain Reaction/standards , Reverse Transcriptase Polymerase Chain Reaction/standards , SARS-CoV-2 , Specimen Handling , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL